
World Transactions on Engineering and Technology Education  2003 UICEE
Vol.2, No.3, 2003

 411

INTRODUCTION

The widespread introduction of industrial computers into
process plants has posed new requirements on control
education [1][2]. These requirements call for combining skills
in hardware configuration and software development of these
specialised devices with those in traditional control system
analysis and design.

Various educators believe that most of the curricula in control
systems theory and engineering cover quite adequately the
analysis and design aspects, but they do not expose students to
the broader and practical issues of a complete control system
[3]. In order to bring control systems education a step closer to
real life, curricula must be enhanced with work that deals with
the implementation of a control system application, which
involves the use of an industrial computer.

The work presented in this article proposes an exercise that
addresses all of the practical issues encountered in a real-life
application of an industrial computer and a way of teaching all
the phases of such a development. It is based on the use of the
IsaGraf software engineering workbench, which is a suite of
tools that professionals use to develop applications for this
class of computing devices [4]. This work may be considered
complementary to that presented elsewhere, which involves the
use of professional process simulators and Computer-Aided
Control Systems Design (CACSD) software to train students in
control systems engineering [5-8].

ARCHITECTURE AND PROGRAMMING OF A SOFT
LOGIC COMPUTER

Industrial computers are characterised by a modular hardware
architecture that consists of a small number of processing
boards and a large number of input and output modules.

Processing boards and input/output modules are placed on a
number of frames that communicate with each other and
are distributed in the industrial complex. Each frame is
equipped with a back plane bus and slots, which the various
modules are plugged in. Input modules are of various types,
each type being able to sample either analogue or discrete
signals. The analogue signals emanate from devices that
measure physical quantities, such as temperature, level, flow,
etc. The discrete signals come from devices that identify logical
states of physical variables, such as the lowest or highest level
of liquid in a vessel. Output modules provide the analogue or
discrete signals for adjusting controlled variables to their
desired values.

Depending on its type, an input or output module may receive
or supply a specific number of similar signals from the sensing
or to the actuating devices. The circuitry of each module used
to receive or transmit each one of these signals is usually called
a channel of the module. Typical modules are available for 8,
16 or 32 channels of discrete signals or 2 to 8 channels of
analogue signals.

A real-time operating system manages the use of the computer
resources, schedules the execution of the entities of the
application software and provides the routines for sampling and
updating the input and output modules. The sampling takes
place by assigning symbolic addresses to each channel of each
module. It also provides the environment to execute the
application software according to the model recommended in
the IEC1131-3 standard [9].

This model defines the way that software should be structured
and run, and defines its main entities. It also specifies the
syntax and semantics of a unified suite of programming
languages that can realise these entities in software. A
schematic presentation of the model is illustrated in Figure 1.

A virtual laboratory exercise to teach the development of industrial computer
applications

George Hassapis & Niovi Pavlidou

Aristotle University of Thessaloniki

Thessaloniki, Greece

ABSTRACT: This paper addresses the issue of teaching the development of industrial control applications by utilising industrial
computers. These computing devices have a modular hardware architecture that is able to receive a varying number of interfaces for
sampling signals from industrial-type sensors and updating signals, which drive a varying number of actuators. They also run under
the control of real-time operating systems. The development involves the elaboration of hardware and the software architectures,
code generation and software testing. Teaching is done through the realisation of a process control system by using a professional
suite of software tools.

 412

C on figura tion

R eso urce R esou rce

T ask

 P ro gram P rogram Pro gram Pro gram

T ask T ask T ask

F B

G lobal an d d irec tly represe nted va ria b le s

FB : F unction B lock

Figure 1: Software model.

According to this model, the software for a particular control
problem is characterised by its architecture, which consists of
resources, tasks and programs. A resource is the operating
system abstract view of the computer platform, a task is a
scheduling facility that executes either periodically or in
response to a state change of a particular Boolean variable,
while a program is the largest software entity that can be
declared at the resource level.

Furthermore, a resource is characterised by its configuration,
which includes the definition of the type of the processing
boards, the placement in the frame of input/output modules
and the assignment of symbolic addresses to the channels
of the input/output modules. A program contains input,
output, internal variable declarations, a body of data
processing instructions and a class of software entities
that are called function blocks. A function block
allows a specified algorithm or set of actions to be applied
to a given set of data in order to produce a new set of
output data. Control over the execution of different programs
and function blocks is achieved by assigning them to different
tasks.

APPLICATION DEVELOPMENT METHODOLOGY

On the basis of the above model, one can write down a list of
actions that the development of software for an industrial
computer requires. These actions may be summarised in the
following list.

• Configuring the hardware platform;
• Architecturally describing the application software;
• Coding the software entities of the application software;
• Testing the application software.

The configuration of the hardware has been explained in the
previous section. Once this action is completed, the architecture
of the software has to be described. This can be done by the
constructs of a language as defined in the IEC 1131-3 standard,
this involves practically the description of the software
decomposition to tasks, programs and function blocks. It also
involves the assignment of the program and function block
execution to the defined tasks and the declaration of the
common data objects, that is the data structures and the
variables that can be accessed by any program or function
block of the application software.

The coding of the software entities involves the writing of the
source code of each program, function block and task of the
software. Source code writing for each individual entity can be
undertaken in any of the languages supported by the
IEC 1131-3 standard. The last step in this work involves the
compilation and correction of syntactic errors of all of the
coded entities and the library routines that may have been
included in these entities.

Testing the software involves verifying that the execution of the
developed software will perform according to the logical
functions that the designer has conceived. A simulation of the
software execution on a host computer is a well-established
technique for a first-level testing.

The efficient implementation of all of the above-mentioned
methodological phases of the application development
would require the availability of supporting software
tools. IsaGraf is a suite of such tools, which has been
developed and built to support the IEC 1131-3
recommendations [4]. One of these tools is the so-called
Project Manager, which supports the implementation of the
configuration of the platform and the description of the
software architecture. A number of editors comprise the other
set of tools, which allow the writing of the source code of the
individual entities of the software in different languages. A
multi-language compiler, a debugger and a target system
simulator are included in this suite of tools.

The use of the IsaGraf suite for teaching the development of an
application of an industrial computer through the study of a
specific process control problem is presented below.

THE PROCESS CONTROL PROBLEM

A schematic diagram of a chemical process with its control
instrumentation is shown in Figure 2. The process involves the
formation of a liquid solution with specific pH value by mixing
water with hydrochloric acid solution.

Figure 2: The chemical process of the pH adjustment of a liquid
solution.

 413

Initially, water is fed into tank A at a quantity that is equal to
half of the tank’s volume. Tank B contains a hydrochloric acid
solution with a concentration equal to 0.4% of the overall liquid
volume. Tank C is filled with water. It is required to form a
homogeneous solution that will have a pH value of 2.7 at a
temperature of 70ºC. The process of forming the homogeneous
solution involves adjusting the volume of the hydrochloric
solution and the water poured into tank A from tanks B and C,
and the heating and stirring of the mixture. A mixer, which is
located at the top of tank A, stirs the mixture. An electric
heater, which is situated at the bottom of tank A, is used to heat
the mixture.

The process operation must be controlled by a system that
performs the following functions:

• Control of the flow rate of the hydrochloric acid solution

with the purpose of increasing the pH value.
• Control of the flow rate of water from tank C when the pH

value needs to be decreased.
• Control of the solution temperature in tank A in parallel

with the control of the pH value.
• Control of the stirring process of the solution in tank A.
• Identification and alarm annunciation of abnormal

operating conditions, such as tank A flooding or liquid
solution level being below a minimum.

• Monitoring the flow rates of the hydrochloric acid solution
and the water, the pH value and the solution temperature
by using bar graphs and analogue value indicators.

• Raising alarms for conditions of low liquid level (LLA)
and high liquid level (HLA) in tank A.

• Bypassing the automatic mode of operation and manually
controlling the flows at the outlets of tanks A, B and C and
the temperature in tank A.

The control loops, the alarms, the monitoring of variables and
the manual controls are realised in the following way:

• To initiate control of the liquid flow from tank B, a loop is

formed by inserting a pH measurement electrode in tank
A, by placing an analogue valve with a linear
characteristic curve at the outlet of tank B and controlling
its position through the use of a Proportional plus Integral
(PI) algorithm.

• To control the water flow rate from tank C, a dosimetric
pump with 2-lit/pulse-flow rate is placed at the outlet of
tank C.

• To drain the contents of tank A, an on/off solenoid valve is
connected to the bottom outlet of tank A.

• A J-type thermocouple is assumed to monitor the
temperature changes of the solution in tank A. A heater is
switched on by a silicon-controlled rectifier every time the
temperature drops below the desired value and is switched
off when the temperature exceeds the desired value.

• Two level switches for identifying the lowest and highest
level of the liquid solution in tank A have been placed at
the key positions of tank A that have been marked with the
LLA and HLA symbols.

• Four on/off switches are used to set the mode of operation
of the following actuators from manual to automatic and
vice versa:

- The analogue valve that controls the flow of the

hydrochloric solution;

- The dosimetric pump that controls the flow of water
from tank C;

- The solenoid valve at the bottom of tank A;
- The heater.

THE TEACHING APPROACH TO THE APPLICATION
DEVELOPMENT

In the teaching approach considered here, the student is guided
to implement the process control functions by applying the
methodology for the software development already presented
above. For the implementation of the control functions, the
student is provided with semi-tailored solutions that are
required to be completed and tested.

Hardware Configuration

With regard to the computer configuration phase, a virtual
computer frame is given and the student is asked to select from
a library of input and output modules to fit the needs of the
application and then insert them to the appropriate slots of the
frame. The selection and insertion can be undertaken by simple
drag-and-draw actions of the mouse in the environment of the
project management tool of the IsaGraf suite. The library
contains simulated versions of input and output modules with 8,
16 and 32 digital channels, modules with two analogue
channels and modules for displaying and inserting
alphanumeric data with up to 32 characters.

In order to simulate the modules, a C-code program was
prepared that defines a data structure with the number of the
channels of the virtual module and the type of data that each
channel may accept, ie Boolean, integer, short or long real
number, message or time type of data.

Referring to the specific application of the pH control, it can be
easily observed in Figure 2 that the soft logic computer must be
able to receive signals from two analogue sensors: the pH
electrode and the temperature thermocouple. Also, it must be
able to receive discrete signals from the following:

• The three level switches in tank A;
• The switches that select the manual or automatic mode of

operation of the control loops of the hydrochloric acid and
water flows, the temperature in tank A, and the flow of the
product from the bottom of the tank A;

• The start/stop switch of the process.

It should provide one analogue output for the control of the
analogue valve and eight discrete outputs as follows:

• The control of the dosimetric pump;
• The heater;
• The solenoid valve at the bottom of the tank;
• The temperature alarm;
• The alarm indicator of a low solution level (LLA);
• The alarm indicator of a high solution level (HLA);
• The indicator of the normal level condition (NLA).

Furthermore, the appropriate alphanumeric display modules
must be included for the display of the flows of the
hydrochloric acid solution and the water, for the display of the
temperature and the pH values. A module of alphanumeric data
entry must be selected in order to insert preset values for the

 414

manual control of the analogue and dosimetric pump and the
set point value of the PI algorithm.

At this point, the student is expected to select the proper
modules from the library of the available modules and insert
them into the appropriate slots of the frame. This action must
be combined later with the action of assigning the names of
particular variables to the channels of each module; this takes
place when defining the software architecture. The assigned
variables are related with the received and sent signals from
and to the process. This combined action is expected to result
in a frame like that shown in Figure 3.

Figure 3: Window for configuring the hardware of the
industrial computer.

In this figure, the tags shown next to each channel of the
module 'sm_din1’ correspond to the names of the variables
used in the programs to denote the values of signals emanating
from the switches that define the manual or automatic mode
of operation of the various actuators. The variable names,
MA flowAsidS, MA_FlowWaterS', MA_FlowProductS,
MA_TemperatureS, Man_ValveOnOff and Man_HeaterOnOff
refer respectively to the switches that set in manual or
automatic mode of operation the analogue valve, the dosimetric
pump, the temperature controller, the solenoid valve and the
heater respectively.

The start variable denotes the state of the start/stop switch,
which initiates and interrupts the whole cycle of the pH
adjustment. The module sm_dout1 provides the eight discrete
outputs of the computer. The names of the variables,
DosePumpPulse, OutProdValve, OutHeater and MixerS,
shown in this module, refer respectively to the signals produced
for the control of the dosimetric pump, the solenoid valve, the
heater, the mixer and for triggering the alarm indicators. When
the temperature exceeds a limit, the output with the variable
name Alarm temp is triggered. When a high or low or normal
level of solution is monitored in tank A, the outputs with the
variable names Alarm High Level, Alarm Low Level and Alarm
Norm level are activated.

The module sm_dad1o provide a continuous display of the
dynamic flow changes of the hydrochloric acid (OutFlowAcid),
the flow of the water (OutFlowWater), the pH value (pH) and the
temperature in the tank (Temperature). The module sm_dad1i
allows the entry of the set point value in the PI control loop of the
analogue valve (Set point) and the preset values for the manual
control of the position of the analogue valve (Man_Acid_Input)
and the dosimetric pump (Man_Water_Input).

Software Architecture

In this phase, the student is provided with a recommended
software architecture, which he/she is expected to read and
understand by using the project management tool of the IsaGraf
suite. The tool translates the provided data into the source code
of the architecture description language that is recommended in
the IEC 1131-3 standard. The window in Figure 4 shows how
the architecture is defined by use of the Project Management
tool.

Figure 4: Graphical description of the software architecture.

Based on what was stated above, the architecture considers that
the computer platform has a single resource, which runs three
tasks: the Begin, Sequential and End tasks. The control and
monitoring functions have been decomposed to a number of
programs, some of them independent while others have a
parent-child relation.

Table 1 lists the control or monitoring functions performed by
each program. The next step of this phase concerns the
definition of the common objects, that is, the various types of
variables that are visible by all of the tasks and programs of the
software. Again, the student is required to invoke the lists of
these variables and identify them.

The last step involves assigning the variable names to the
channels of the input and output modules of the computer. This
is achieved through the graphical presentation of the addresses
of the channels and the writing in the field (next to the address)
of each channel the symbolic name of the appropriate variable.
Figure 5 provides an example where the assignment of the
variable names to the channels of the discrete input card
sm_din1 is shown.

Figure 5: Assignment of variable names to the addresses of the
channels of the input and output modules.

 415

Table 1: Description of the functions performed by the software
programs.

Program Name Program Type Description
Alarms Parent LLA and HLA check

and annunciation
Main Parent Coordinates the call of

the AcidPID and
PumpCtrl sub-programs

AcidPID Child Implements the PI
control of the flow of
the hydrochloric acid
solution to tank A

PumpCtrl Child Implements the flow
control of the water
from tank C to tank A

ProdOut Parent Controls the solenoid
valve at the bottom of
tank A

SIM_pH Parent pH computation -
simulation of the pH
electrode operation

Graphics Parent Imports the graphical
presentation of the bar
graph and pictures of
the virtual instruments,
prepared by the Easy
Icons and IconMaster
packages
Updates the dynamic
changes of the values of
the measured quantities

Temper Parent Temperature
computation simulation
of the temperature
sensor operation

In Figure 5, the selected module, which is denoted by the slot
number in black at the left side of the diagram, a list of
numbered channels is provided on the right side of the diagram.
The student may inscribe next to each channel number the
name of the variable that he/she wishes to assign to this
channel. At this point, the description of the software
architecture is concluded and the student is advised to proceed
with writing the source code of the programs that are listed in
Table 1. This can be carried out by calling the language editor,
which each program is going to be written to, from the Project
Management tool.

As an option, instead of writing the code, the student may
obtain the full source code of the programs with comments,
which can then be studied in detail in order to understand the
functions that they perform. The completion of this phase is
followed by the compilation phase in which all of the written
codes for the architecture description and the programs are
converted to executable code.

Control System Testing

The phase to test the logic of the software can be initiated once
the syntactically correct executable code is produced.
Simulation of the code execution is an option that is offered by
the suite of tools. In this option, the developed software runs on
a host computer under user-defined scenarios of input values.

The simulator on the host computer imitates the way that
application software is executed on a target industrial computer
and provides either a pre-programmed graphical display of the
monitored variables and controls of the process operation or
else permits the use of a custom-made display. Through this
display, a software execution scenario can be set up and the
output results can be monitored by either running the software
on an instruction-by-instruction basis, or by inserting
breakpoints in the code and run sections of the software. These
two modes of software execution allow the student to identify
programs and sections of code that do not behave in an
expected manner and to modify them accordingly. The student
in this phase of software development can obtain the full source
code of the programs with comments, which can then be
studied and to improve understanding of the functions that they
perform. The student is also provided with a display like that
shown in Figure 6 and is asked to test the execution of the
software.

Figure 6: The display of the variables and controls of the
process operation.

Although the student can work on any testing scenario, one that
is recommended is where the student has to act as a typical
plant operator. First, the student has to initiate the start-up
procedure and verify that the developed system acts in an
expected manner. Next, the student has to run the process in a
normal mode of operation and, at the end, he/she has to test the
alarm functions. The automatic/manual switches of the
analogue valve, the heater, the dosimetric pump and the
solenoid valve correspond in the start-up process to the
variables MA_flowAcidS, MA_flowWaterS, MA_flowProdS and
MA_TemperatureS respectively (see Figure 6), which are set to
the manual mode of operation. Then, the analogue input
Man_Water_Input is loaded with the value of 300 strokes,
which is a preset value for the dosimetric pump.

In this mode of operation, one expects to see the analogue and
the solenoid valves closed, the heater off and tank A to be filled

 416

with a volume of 600 litres of pure water from tank B. If the
software runs correctly, by pressing the start button, the student
can see the volume indicator of tank A rise and, when the NLA
mark is reached, the dosimetric pump would shut off and the
pH indicator would display the value of 7. This is the pH value
of the water.

The next operator action would be to adjust manually the flow
of the hydrochloric solution in order to form a solution with the
desired pH value. This can be realised by loading the analogue
input Man_Acid_Input with a value of 50% of the analogue
valve opening and then observe how the pH value changes as
liquid from tank C flows into tank A. When a pH value in the
range of 2.5-2.7 is monitored, all of the switches are set from
the manual to the automatic mode of operation. The expected
software behaviour to be observed, after a short period of time,
is that the pH value of the solution reaches a value in the range
of 2.68-2.72, the temperature of the solution reaches a value in
the range of 69-71ºC, and the mixer operation to start. The
mixer operation continues until the operator gives the command
to drain the contents of tank A. This command can be given by
setting the manual/automatic switch of the solenoid valve to the
on position.

During the stirring period, the pH and temperature values
continue to have values in the previously mentioned ranges, as
long as the level of the liquid solution in tank A is below the
HLA mark. In order to test the operation of the alarm functions,
the start-up procedure can be repeated but, this time, a value
greater than 600 litres (eg 650 litres) is loaded into the
Man_Water_Input. One should expect to see the level of the
liquid in tank A to reach a point above the HLA mark, while
the alarm indicator Hlevel flashes. After draining tank A to
below the mark LLA, one should expect to see the alarm
indicator Llevel to flash.

By performing the tests described here, or other tests that the
student thinks of, one may verify the correctness of the
developed software. The reader may carry out the experiment
described in this article by accessing the site mentioned in Ref.
[10].

CONCLUSIONS

This article has presented an exercise for teaching the
development methodology of an industrial computer
application. The exercise concerns the start-up, normal mode of

operation and the alarm annunciation of abnormal operating
conditions of a process that is used to adjust the pH of a
chemical solution.

The exercise, through the use of a suite of software tools,
demonstrates how one can implement the four phases of the
methodology. The respective work involves the computer
hardware configuration, the description of the software
architecture, the writing of the code of the individual entities of
the software, as well as its testing, by simulating its execution
on a host computer.

REFERENCES

1. MotioNet.com Inc., Industrial Computer Directory (2001),

http://www.motionnet.com/cgibin/search.exe?a=cat&no=2
13

2. Crispin, A.J., Programmable Logic Controllers and
their Engineering Application. London: McGraw-Hill
(1997).

3. Antsaklis, P., Başar, T., DeCarlo, R., McClamroch, N.H.,
Spong, M. and Yurkovich, S., Report on the NSF/CSS
workshop on new directions in control engineering
education. IEEE Control Systems Magazine, 19, 53
(1999).

4. Isagraf, Isagraf IEC 1131-3 Soft Logic, User’s Guide.
Seyssins: CJ International (1998).

5. Cooper, D. and Dougherty, D., Control station: an
interactive simulator for process control education. Inter.
J. of Engng. Educ., 17, 276 (2001).

6. Shin, D., Yoon, E.S., Park, S.J. and Lee, E.S., Web-based
interactive virtual laboratory system for unit operations and
process systems engineering education. Computers &
Chemical Engng., 24, 1381-1385 (2000).

7. Blackley, J.J. and Irvine, D.A., Teaching programmable
logic controllers using multimedia-based courseware.
Inter. J. of Electrical Engng. Educ., 37, 305 (2000).

8. Copinga, G.J.C., Verhaegen, M.H.G. and Van de Ven,
M.J., Toward a Web-based study support environment for
teaching automatic control. IEEE Control Systems
Magazine, 20, 8 (2000).

9. International Electrotechnical Commission, IEC-1131-3,
Programmable Controllers - Part 3: Programming
languages. Geneva: International Electrotechnical
Commission (1993).

10. Hassapis, G., Industrial Informatics (2002),
http://indinf.ee.auth.gr/myweb

http://www.motionnet.com/cgi-bin/search.exe?a=cat&no=2173
http://www.motionnet.com/cgi-bin/search.exe?a=cat&no=2173
http://indinf.ee.auth.gr/myweb

	A virtual laboratory exercise to teach the development of industrial computer applications
	
	
	
	
	
	
	Parent

